

PHOTOCOUPLERS PS8601L

HIGH SPEED ANALOG OUTPUT TYPE 8 PIN PHOTOCOUPLER

DESCRIPTION

PS8601 and PS8601L is a 8-pin high speed photocoupler containing a GaAlAs LED on input side and a P-N photodiode and a high speed amplifier transistor on output side on one chip. PS8601 is in a plastic DIP (Dual In-line Package). PS8601L is lead bending type (Gull wing) for surface mount.

FEATURES

High supply voltage (Vcc = 35 V MAX.)
 High speed response (tphl, tplh: 0.8 µs MAX.)
 High isolation voltage (BV: 5 000 Vr.m.s. MIN.)

TTL, CMOS compatible with a resistor

• Taping product number (PS8601L-E3)

• UL recognized [File No. E72422(s)]

· VDE0884 recognized: option

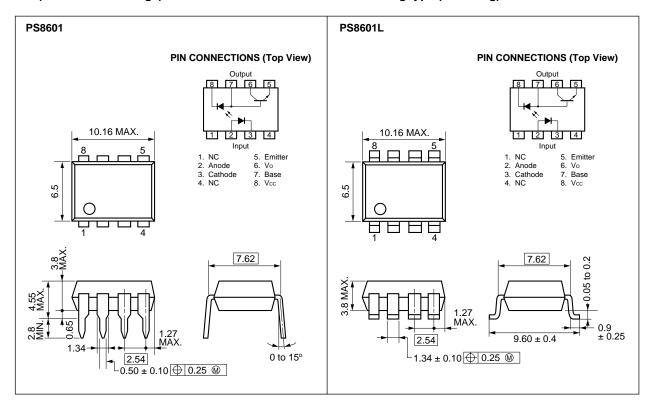
APPLICATIONS

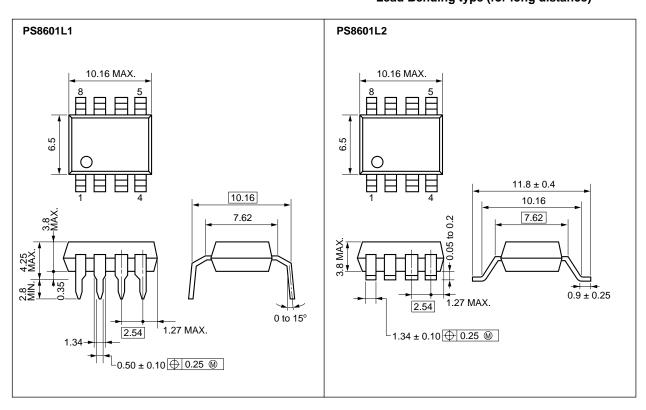
- Interface circuit for various instrumentations, control equipments.
- · Computer and peripheral manufactures.
- · Electrical isolation of TV video terminals.

ORDERING INFORMATION

PART NUMBER	PACKAGE	SAFETY STANDARD APPROVAL			
PS8601	8 pin DIP	Normal specification products			
PS8601L	8 pin DIP, lead bending type	UL Approved			
PS8601L1	8 pin DIP, lead bending type				
PS8601L2	(for long distance)				
PS8601-V	8 pin DIP	VDE0884 specification products (option)			
PS8601L-V	8 pin DIP, lead bending type	VDE Approved			
PS8601L1-V	8 pin DIP, lead bending type				
PS8601L2-V	(for long distance)				

[Handling Precaution]


This product is weak for static electricity by designed with high speed integrated circuit. So, protect against static electricity when handling.


PACKAGE DIMENSIONS (Unit: mm)

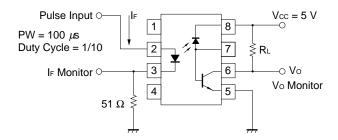
DIP (Dual In-line Package)

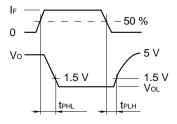
Lead Bending type (Gull-wing)

Lead Bending type (for long distance)

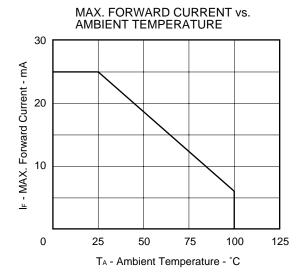
ABSOLUTE MAXIMUM RATINGS (Tc = 25 °C)

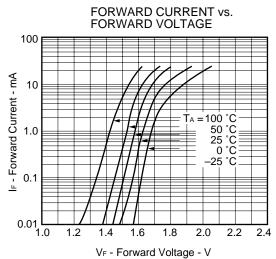
Diode			
Forward Current	lF	25	mA
Reverse Voltage	VR	5	V
Power Dissipation	PD	45	mW
Detector			
Supply Voltage	Vcc	35	V
Output Voltage	Vo	35	V
Output Current	lo	8	mA
Power Dissipation	Pc	100	mW
Isolation Voltage ^{*1}	BV	5 000	$V_{r.m.s.}$
Operating Temperature	TA	-55 to +100	°C
Storage Temperature	T _{stg}	-55 to +150	°C

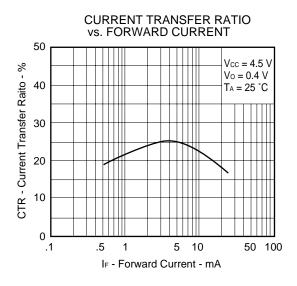

^{*1} AC voltage for 1 minute at $T_A = 25$ °C, RH = 60 % between input and output.

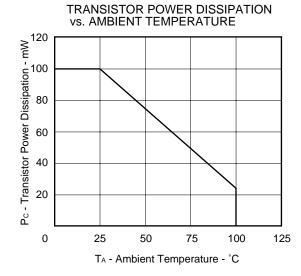

ELECTRICAL CHARACTERISTICS (TA = 25 °C)

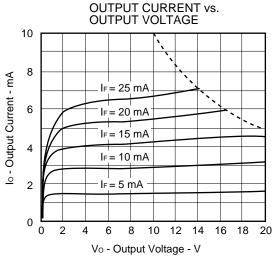
PARAMETER		SYMBOL	MIN.	TYP	MAX.	UNIT	TEST CONDITIONS
Diode	Forward Voltage	VF		1.7	2.2	V	IF = 16 mA
	Reverse Current	I R			10	μΑ	VR = 5 V
	Forward Voltage Temperature Coefficient	<u>⊿V</u> F ⊿T		-1.6		mV/°C	IF = 16 mA
	Junction Capacitance	Ct		60		pF	V = 0, f = 1 MHz
Detector	High Level Output Current	Іон 1		3	500	nA	IF = 0 mA, Vcc = Vo = 5.5 V
	High Level Output Current	Іон 2			100	μΑ	IF = 0 mA, Vcc - Vo = 35 V
	Low Level Output Voltage	Vol		0.1	0.4	V	IF = 16 mA, Vcc = 4.5 V, Io = 1.2 mA
	Low Level Supply Current			50		μΑ	IF = 16 mA, Vo = Open, Vcc = 35 V
	High Level Supply Current	Іссн		0.01	1	μΑ	IF = 0 mA, Vo = Open, Vcc = 35 V
Coupler	Current Transfer Ratio	CTR	15			%	IF = 16 mA, Vcc = 4.5 V, Vo = 0.4 V
	Isolation Resistance	R ₁₋₂	10 ¹¹			Ω	Vin-out = 1 kVDC
	Isolation Capacitance	C ₁₋₂		0.7		pF	V = 0, f - 1 MHz
	Propagation Delay Time $(H \rightarrow L)$ *2	tрнL		0.5	0.8	μs	IF = 16 mA, Vcc = 5 V RL = 1.9 $k\Omega$
	Propagation Delay Time $(L \rightarrow H)$ *2	tрLH		0.3	0.8	μs	IF = 16 mA, Vcc = 5 V RL = 1.9 $k\Omega$

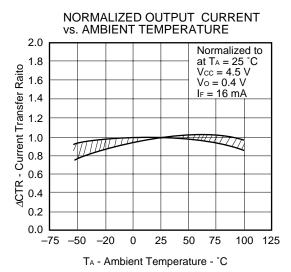

3

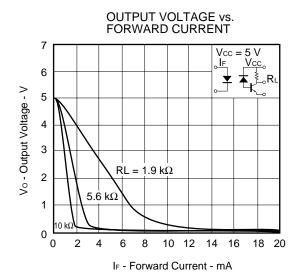

*2 Test Circuit for Propagation Delay Time.

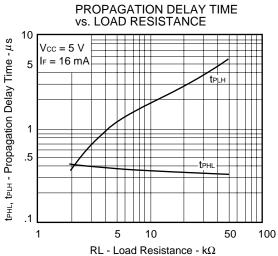


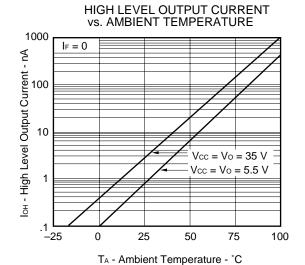


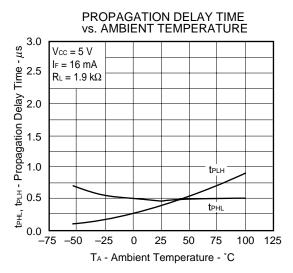

TYPICAL CHARACTERISTICS (TA = 25 °C)

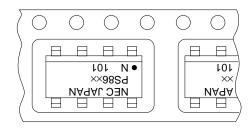


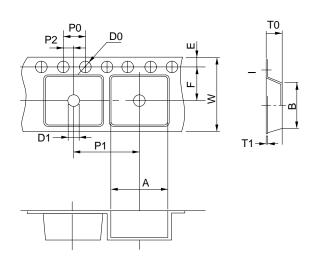






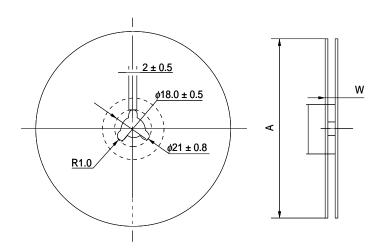





TAPING

1. TAPING DIRECTION

PS8601L-E3



2. OUTLINE AND DIMENSIONS (TAPE)

	Unit: mm		
SYMBOL	RATINGS		
Α	10.7 ± 0.1		
В	10.3 ± 0.1		
D0	1.55 ± 0.1		
D1	1.55 ± 0.1		
E	1.75 ± 0.1		
F	7.5 ± 0.1		
P0	4.0 ± 0.1		
P1	12.0 ± 0.1		
P2	2.0 ± 0.1		
T0	4.3 ± 0.2		
T1	0.3		
W	16 ± 0.3		

3. OUTLINE AND DIMENSIONS (REEL)

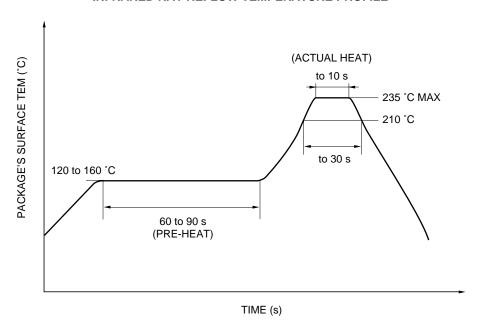
	Unit: mm			
SYMBOL	RATINGS			
Α	330			
N	80 ± 5.0			
W	16.4 ^{+2.0}			

4. PACKING; 1000 pieces/reel

SOLDERING PRECAUTION

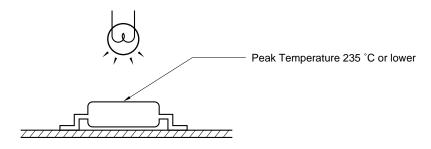
(1) Infrared reflow soldering

• Peak temperature : 235 °C or lower (plastic surface)


• Time : 30 s or less

(Time during plastic surface temperature overs 210 °C)

· No. of reflow times: Three


• Flux : Rosin-base flux

INFRARED RAY REFLOW TEMPERATURE PROFILE

<NOTES>

(1) Please avoid be removed the residual flux by water after the first reflow processes.

(2) Dip soldering

Peak temperature : 260 °C or lower
Time : 10 s or less
Flux : Rosin-base flux

SPECIFICATION OF VDE MARKS LICENSE DOCUMENT (VDE0884)

PARAMETER	SYMBOL	SPECK	UNIT
Application classification (DIN VDE0109) for rated line voltages \leq 300 V_{eff} for rated line voltages \leq 600 V_{eff}		IV III	
Climatic test class (DIN IEC 68 Teil 1/09.80)		55/100/21	
Dielectric strength maximum operating isolation voltage. Test voltage (partial discharge test procedure a for type test and random test) $U_{pr} = 1.2 \times U_{IORM}$, Pd < 5 pC	UIORM Upr	890 1 068	$V_{\text{peak}} \\ V_{\text{peak}}$
Test voltage (partial discharge test procedure b for random test) $U_{pr} = 1.6 \times U_{IORM}, Pd < 5 pC$	Upr	1 424	Vpeak
Highest permissible overvoltage	Utr	8 000	V_{peak}
Degree of pollution (DIN VDE 0109)		2	
Clearance distance		> 7.0	mm
Creepage distance		> 7.0	mm
Comparative tracking index (DIN IEC 112/VDE 0303 part 1)	СТІ	175	
Material group (DIN VDE0109)		Illa	
Storage temperature range	Tstg	-55 to +150	Cel
Operating temperature range	Tamb	-55 to +100	Cel
Isolation resistance, minimum value UIO = 500 V dc at 25 Cel UIO = 500 V dc at Tamp maximum at least 100 Cel	Ris min Ris min	10 ¹² 10 ¹¹	ohm ohm
Safety maximum ratings (maximum permissible in case of fault, see thermal derating curve) Package temperature Current (input current IF, Psi = 0)	Tsi Isi	175 400	Cel mA
Power (output or total power dissipation) Isolation resistance Uio = 500 V dc at 175 Cel (Tsi)	Psi Ris min	700	mW

9

CAUTION

The Great Care must be taken in dealing with the devices in this guide.

The reason is that the material of the devices is GaAs (Gallium Arsenide), which is designated as harmful substance according to the law concerned.

Keep the law concerned and so on, especially in case of removal.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.

M4 96.5